Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samuel Robinson Jebas, ${ }^{\text {a }}$ Balasingh Ravindran Durai Nayagam ${ }^{\text {b }}$ and Thailampillai Balasubramanian ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, India, and
${ }^{\mathbf{b}}$ Department of Chemistry, Popes College,
Sawyerpuram, Tuticorin 628 251, India

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study
$T=303 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.024$
$w R$ factor $=0.065$
Data-to-parameter ratio $=11.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hexaaquamanganese(II) bis[2-(carboxylatomethylsulfanyl)pyridine N-oxide]

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}$, the pyridylsulfanyl N -oxide acetate anions have no direct coordination to the $\mathrm{Mn}^{\mathrm{II}}$ atom. The $\mathrm{Mn}^{\mathrm{II}}$ atom is octahedrally coordinated by six water molecules and is located on an inversion centre. The cations and anions are linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network.

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibiotic activities (Lobana \& Bhatia, 1989). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991). In view of the importance of N-oxide derivatives, we have previously reported the crystal structure of 2-(acetylsulfanyl)pyridine N-oxide (Jebas et al., 2005). As an extension of this work, we report here the crystal structure of the title compound, (I).

(I)

In the title compound (Fig. 1), the $\mathrm{Mn}^{\mathrm{II}}$ ion is octahedrally coordinated by six water molecules and is located on an inversion centre. The $\mathrm{Mn}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ angles are comparable with those reported for other hexaaquamanganese(II) compounds (Wu et al., 1995; Zhang et al., 2005). The $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{S}$ bond lengths and angles of the anion are normal. The $\mathrm{N}-\mathrm{O}$ bond length is in good agreement with the mean value of 1.335 (2) \AA reported in the literature for pyridine N-oxides (Allen et al., 1987). The cation and anion are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, to give a threedimensional network structure (Table 2).

Experimental

Compound (I) was prepared by heating a mixture of the sodium salt of 2-pyridylsulfanylacetic acid ($0.414 \mathrm{~g}, 2 \mathrm{mmol}$) and manganese(II) acetate $(0.245 \mathrm{~g}, 1 \mathrm{mmol})$ in water ($\mathbf{(~ \mathbf { m l })}$) at 343 K for 1 h . Single
crystals of (I) were obtained after 7 d by slow cooling of the solution (yield 80\%).

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}$

$M_{r}=531.41$

Monoclinic, $P 2_{1} / c$
$a=7.413$ (1) \AA
$b=7.079$ (1) \AA
$c=20.632(2) \AA$
$\beta=99.530(7)^{\circ}$
$V=1067.8(2) \AA^{3}$

$Z=2$

$D_{x}=1.653 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=303$ (2) K
Prism, white
$0.24 \times 0.2 \times 0.18 \mathrm{~mm}$

Data collection

Nonius MACH3 diffractometer ω / θ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.810, T_{\text {max }}=0.854$
2380 measured reflections
1873 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.065$
$S=1.04$
1873 reflections
166 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0339 P)^{2} \\
&+0.3942 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Mn1-O4	2.1741 (14)	$\mathrm{O} 1-\mathrm{N} 1$	1.340 (2)
Mn1-O5	2.1870 (14)	O2-C7	1.269 (2)
Mn1-O6	2.1894 (14)	O3-C7	1.236 (2)
S1-C5	1.7392 (19)	N1-C1	1.347 (3)
S1-C6	1.8038 (18)	N1-C5	1.362 (2)
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 4$	180	$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 6$	87.48 (6)
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	85.94 (5)	$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	88.34 (5)
O4-Mn1-O5	94.06 (5)	$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	92.52 (6)
O5 ${ }^{\text {i }}$ - Mn1-O5	180	$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	180
O4-Mn1-O6	91.66 (5)		

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\text {ii }}$	0.84 (1)	1.90 (1)	2.726 (2)	172 (2)
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 1^{\text {ii }}$	0.84 (1)	2.52 (2)	3.218 (2)	142 (2)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2^{\text {iii }}$	0.85 (1)	1.98 (1)	2.807 (2)	164 (3)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iii }}$	0.84 (1)	2.05 (1)	2.840 (2)	156 (2)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.84 (1)	1.88 (1)	2.717 (2)	172 (3)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 3$	0.84 (1)	1.86 (1)	2.702 (2)	176 (2)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$	0.84 (1)	1.85 (1)	2.683 (2)	170 (3)
Symmetry codes: $x,-y+\frac{3}{2}, z+\frac{1}{2}$.	$-x,$	$+\frac{1}{2}$; (iii)	$+1,-y$	$z+1 ;$ (iv)

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme for the contents of the asymmetric unit. For clarity, only the independent anion is shown. The other anion and the unlabelled atoms of the cation are generated by the symmetry operation $(1-x, 2-y, 1-z)$.

C-bound H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.97 \AA$ (methylene), and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ in the riding-model approximation. Water H atoms were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.84 (1) and 1.37 (2) Å, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Jebas, S. R., Balasubramanian, T., Ravidurai, B. \& Kumaresan, S. (2005). Acta Cryst. E61, o2677-o2678.
Katsuyuki, N., Carter, B. J., Xu, J. \& Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5100-5102.
Lobana, T. S. \& Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394-401.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Gottingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wu, L. P., Yamamoto, M., Kuroda-Sowa, T., Maekawa, M., Fukui, J. \& Munakata, M. (1995). Inorg. Chim. Acta, 239, 165-169.
Zhang, Z.-Y., Gao, S., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2005). Acta Cryst. E61, m85-m86.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

